Ramsey Classification Theorems and applications to the Tukey theory of ultrafilters

Natasha Dobrinen

University of Denver

joint work with

Stevo Todorcevic

CNRS, Université Paris VII

Czech Winter School 2012

Ramsey Theorem. For each $k, n \ge 1$ and coloring $c : [\omega]^k \to n$, there is an infinite $M \subseteq \omega$ such that c restricted to $[M]^k$ monochromatic.

Erdős-Rado Canonization Theorem. For each $k \ge 1$ and each equivalence relation E on $[\omega]^k$, there is an infinite $M \subseteq \omega$ such that $E \upharpoonright [M]^k$ is *canonical*,

i.e. $\mathsf{E} \upharpoonright [M]^k$ is given by E_I^k for some $I \subseteq k$.

For
$$a, b \in [\omega]^k$$
, $a \in \mathbb{F}_I^k$ b iff $\forall i \in I$, $a_i = b_i$.

Note. The Erdős-Rado Theorem is a canonization theorem for the fronts (barriers) of the form $[\omega]^k$ on the Ellentuck space.

Def. $\mathcal{F} \subseteq [\omega]^{<\omega}$ is a *front* on $[\omega]^{\omega}$ iff (i) for each $X \in [\omega]^{\omega}$, there is an $a \in \mathcal{F}$ such that $a \sqsubset X$; and (ii) for $a, b \in \mathcal{F}$, $a \not\sqsubset b$.

Def. For a front \mathcal{F} , a map $\varphi : \mathcal{F} \to \mathbb{N}$ is *irreducible* if φ is (a) *inner*, i.e. $\varphi(a) \subseteq a$ for all $a \in \mathcal{F}$, and (b) *Nash-Williams*, i.e. for each $a, b \in \mathcal{F}$, $\varphi(a) \not \sqsubset \varphi(b)$.

Pudlak-Rödl Thm. For every front (barrier) \mathcal{F} on \mathbb{N} and every equivalence relation \mathbb{E} on \mathcal{F} , there is an infinite $M \subseteq \mathbb{N}$ such that $\mathbb{E} \upharpoonright (\mathcal{F}|M)$ is represented by an irreducible mapping defined on $\mathcal{F}|M$.

Def. $\mathcal{F}|M = \{a \in \mathcal{F} : a \subseteq M\}.$

Let $l_0^0 = 0$, $l_1^0 = 1$, $l_2^0 = 3$, $l_3^0 = 6$, ... $\mathbb{T}_1(0) = \{\langle \rangle, \langle 0 \rangle\}$. $\mathbb{T}_1(n) = \{\langle \rangle, \langle n \rangle, \langle n, i \rangle : l_n^0 \le i < l_{n+1}^0\}$, n > 0. $\mathbb{T}_1 = \bigcup_{n < \omega} \mathbb{T}_1(n)$. (Draw \mathbb{T}_1 and \mathbb{S}_1 .)

The space $(\mathcal{R}_1, \leq_1, r^1)$

 $X \in \mathcal{R}_1$ iff $X \subseteq \mathbb{T}_1$ and $X \cong \mathbb{T}_1$.

For $X, Y \in \mathcal{R}_1$, $Y \leq_1 X$ iff $Y \subseteq X$.

 $r_k^1(X) =$ the "initial segment" of X of length k.

 $\mathcal{AR}_k^1 = \{ r_k^1(X) : X \in \mathcal{R}_1 \}. \qquad \mathcal{AR}^1 = \bigcup_{k < \omega} \mathcal{AR}_k^1.$

• \mathcal{R}_1 comes immediately after the Ellentuck space in complexity.

The spaces
$$(\mathcal{R}_{lpha},\leq_{lpha},r^{lpha})$$
, $lpha<\omega_{1}$.

Recursive Construction. Two cases: α is a successor ordinal, α is a limit ordinal. (Draw \mathbb{T}_2 , \mathbb{S}_2 , \mathbb{T}_{ω} , \mathbb{S}_{ω} .)

 $X \in \mathcal{R}_{\alpha}$ iff $X \subseteq \mathbb{T}_{\alpha}$ and $X \cong \mathbb{T}_{\alpha}$.

For $X, Y \in \mathcal{R}_{\alpha}$, $Y \leq_{\alpha} X$ iff $Y \subseteq X$.

 $r_k^{\alpha}(X) =$ the "initial segment" of X of length k.

 $\mathcal{AR}_k^{\alpha} = \{ r_k^{\alpha}(X) : X \in \mathcal{R}_1 \}. \qquad \mathcal{AR}^{\alpha} = \bigcup_{k < \omega} \mathcal{AR}_k^{\alpha}.$

Topological Ramsey spaces (\mathcal{R}, \leq, r)

basic open sets $[a, A] = \{X \in \mathcal{R} : \exists n(r_n(X) = a) \text{ and } X \leq A\}.$

Def. $\mathcal{X} \subseteq \mathcal{R}$ is *Ramsey* iff for each $\emptyset \neq [a, A]$, there is a $B \in [a, A]$ such that either (i) $[a, B] \subseteq \mathcal{X}$ or else (ii) $[a, B] \cap \mathcal{X} = \emptyset$.

Def. [Todorcevic] A triple (\mathcal{R}, \leq, r) is a *topological Ramsey space* of every property of Baire subset of \mathcal{R} is Ramsey and if every meager subset of \mathcal{R} is Ramsey null.

Abstract Ellentuck Theorem. [Todorcevic] If (\mathcal{R}, \leq, r) satisfies **A.1** - **A.4** and \mathcal{R} is closed (in $\mathcal{AR}^{\mathbb{N}}$), then every property of Baire subset is Ramsey.

Classic Example. The Ellentuck space is a topological Ramsey space.

Thm. [D/T 2,3] For each $\alpha < \omega_1$, $(\mathcal{R}_{\alpha}, \leq_{\alpha}, r^{\alpha})$ is a topological Ramsey space.

Rem 1. To each topological Ramsey space there correspond notions of selective and Ramsey ultrafilter. (They are not necessarily the same.) \mathcal{R}_{α} induces Laflamme's ultrafilter \mathcal{U}_{α} .

Rem 2. $(\mathcal{R}_0, \leq_0, r^0)$ is the Ellentuck space.

Ramsey Classification Theorems for Fronts on \mathcal{R}_{α} , $\alpha < \omega_1$

Def. An equivalence relation E on \mathcal{AR}_k^{α} is *canonical* iff it is induced by a downward closed subset of $r_k^{\alpha}(\mathbb{S}_{\alpha})$.

Ramsey Classification Theorem for AR_k^{α} . [D/T 2,3]

Given $A \in \mathcal{R}_{\alpha}$, $k \geq 1$ and an equivalence relation E on $\mathcal{AR}_{k}^{\alpha}$, there is a $C \leq_{\alpha} A$ such that $\mathsf{E} \upharpoonright (\mathcal{AR}_{k}^{\alpha}|C)$ is canonical.

Numbers of Canonical Equivalence Relations.

$$\begin{aligned} &\mathcal{AR}_{k}^{1}: \ (2^{1}+1)(2^{2}+1)\cdots(2^{k}+1). \\ &\mathcal{AR}_{1}^{2}: \ 4. \qquad \mathcal{AR}_{2}^{2}: \ 4\cdot 6. \qquad \mathcal{AR}_{3}^{2}: \ 4\cdot 6\cdot ((2^{3}+1)(2^{4}+1)+1). \\ &\mathcal{AR}_{k}^{2}: \ \Pi_{i < k} \left(\Pi_{l_{i}^{1} \leq j < l_{i+1}^{1}}(2^{j}+1)+1\right). \end{aligned}$$

Def. $\mathcal{F} \subseteq \mathcal{AR}^{\alpha}$ is a *front* on \mathcal{R}_{α} iff for each $Y \in \mathcal{R}_{\alpha}$, there is an $a \in \mathcal{F}$ such that $a \sqsubset Y$; and for $a, b \in \mathcal{F}$, $a \not\sqsubset b$.

Def. For \mathcal{F} a front, a function φ on \mathcal{F} is

- 1. inner if $\varphi(a) \subseteq a$ for all $a \in \mathcal{F}$.
- 2. Nash-Williams if $\varphi(a) \not \sqsubset \varphi(b)$, for all $a, b \in \mathcal{F}$.

Def. Let E be an equivalence relation on a front \mathcal{F} .

- 1. φ represents E iff for all $a, b \in \mathcal{F}$, $a \in b$ iff $\varphi(a) = \varphi(b)$.
- 2. E is *canonical* iff E is represented by an inner Nash-Williams function φ , maximal among all inner Nash-Williams functions representing E.

Ramsey Classification Theorem for fronts on \mathcal{R}_{α} . [D/T 2,3] Given any front \mathcal{F} on \mathcal{R}_{α} , $A \in \mathcal{R}_{\alpha}$ and equivalence relation E on \mathcal{F} , there is a $C \leq_{\alpha} A$ such that $E \upharpoonright (\mathcal{F}|C)$ is canonical. **Motivation:** Investigate the Structure of Tukey types of ultrafilters near the bottom of the Rudin-Keisler hierarchy

Def. $\mathcal{U} \geq_{RK} \mathcal{V}$ iff there is a function $h : \omega \to \omega$ such that $\mathcal{V} = h(\mathcal{U}) := \langle h''\mathcal{U} \rangle.$

Def. $\mathcal{U} \geq_T \mathcal{V}$ iff there is a *cofinal* map $h : \mathcal{U} \to \mathcal{V}$ taking cofinal subsets of \mathcal{U} to cofinal subsets of \mathcal{V} .

 $\mathcal{U} \geq_T \mathcal{V} \Rightarrow \operatorname{cof}(\mathcal{U}) \geq \operatorname{cof}(\mathcal{U}) \text{ and } \operatorname{add}(\mathcal{U}) \leq \operatorname{add}(\mathcal{V}).$

 $\mathcal{U} \equiv_T \mathcal{V} \text{ iff } \mathcal{U} \leq_T \mathcal{V} \text{ and } \mathcal{V} \leq_T \mathcal{U}.$

Fact. $\mathcal{U} \equiv_T \mathcal{V}$ iff \mathcal{U} and \mathcal{V} are cofinally equivalent.

Fact. $\mathcal{U} \geq_{RK} \mathcal{V}$ implies $\mathcal{U} \geq_T \mathcal{V}$.

Thm. [Laflamme 89] For each $1 \leq \alpha < \omega_1$, there is a forcing $\mathbb{P}_{\alpha} = ([\omega]^{\omega}, \leq_{\mathbb{P}_{\alpha}})$ which adds a generic ultrafilter \mathcal{U}_{α} such that

- 1. \mathcal{U}_{α} is a rapid p-point satisfying certain partition properties.
- 2. The nonprincipal RK predecessors of U_{α} form a decreasing chain of order type $(\alpha + 1)^*$, the least of which is Ramsey.
- 3. \mathcal{U}_{α} has complete combinatorics over HOD(\mathbb{R})^{V[G]}.

Question 1. What are the Tukey types below U_{α} ?

Rem. \mathcal{U}_1 is weakly Ramsey but not Ramsey.

Thm. [Todorcevic in [Raghavan/Todorcevic]] If \mathcal{U} is Ramsey and $\mathcal{V} \leq_T \mathcal{U}$, then \mathcal{V} is isomorphic to some iterated Fubini product of \mathcal{U} .

Question 2. Is there some similar characterization of the ultrafilters $\leq_T U_{\alpha}$ in terms of Rudin-Keisler?

Def. \mathcal{U} is *Ramsey* iff for each function $c : [\omega]^2 \to 2$, there is a $U \in \mathcal{U}$ such that c is monochromatic on $[U]^2$.

Answers: Yes and Yes.

Fact. Each \mathcal{U}_{α} is a p-point.

Def. \mathcal{U} is a *p*-*point* if for each sequence $X_0 \supseteq X_1 \supseteq \ldots$ in \mathcal{U} , there is a $Y \in \mathcal{U}$ such that for each $n < \omega$, $Y \subseteq^* X_n$ (i.e. $|Y \setminus X_n| < \omega$).

Theorem. [D/T 1] If \mathcal{U} is a p-point and $\mathcal{U} \geq_T \mathcal{W}$, then there is an $h : \mathcal{U} \to \mathcal{W}$ which is continuous, monotone, and cofinal.

Key Ideas. [D/⊤ 2,3]

- 1. If $\mathcal{U}_{\alpha} \geq_{T} \mathcal{V}$, then there is a front \mathcal{F} on \mathcal{R}_{α} and a function $f: \mathcal{F} \to \omega$ such that $f(\mathcal{U}_{\alpha}|\mathcal{F}) = \mathcal{V}$. This f induces an equivalence relation on \mathcal{F} .
- 2. The Ramsey Classification Theorem for \mathcal{R}_{α} gives understanding of the function f. Ramsey Theory is essential to this proof, which could not be done just by forcing.

The Tukey and Rudin-Keisler types Tukey below \mathcal{U}_{α}

Thm. [D/T 2,3] For all $1 \leq \alpha < \omega_1$, there is a countable collection of rapid p-points \mathcal{Y}_S^{α} such that, if $\mathcal{V} \leq_T \mathcal{U}_{\alpha}$, then \mathcal{V} is isomorphic to a tree ultrafilter (a countable iteration of Fubini products) of ultrafilters from among the \mathcal{Y}_S^{α} .

The *S* are the downward closed subsets of $\mathbb{S}_{\alpha}(n)$, $n < \omega$, and $\mathcal{Y}_{S}^{\alpha} = \pi_{S}(\mathcal{U}_{\alpha}|\mathcal{R}_{\alpha}(n))$.

Thm. [D/T 2,3] For all $1 \le \alpha < \omega_1$, the Tukey types of all ultrafilters Tukey reducible to \mathcal{U}_{α} form a decreasing chain of order type $(\alpha + 1)^*$. The Tukey least of these is a Ramsey ultrafilter.

[Dobrinen/Todorcevic 1] *Tukey types of ultrafilters*, Illinois Journal of mathematics, to appear 2012.

[Dobrinen/Todorcevic 2] A Ramsey Classification Theorem and its application in the Tukey theory of ultrafilters, submitted.

[Dobrinen/Todorcevic 3] Ramsey Classification Theorems and their applications in the Tukey theory of ultrafilters, preprint.

[Laflamme 89] *Forcing with filters and complete combinatorics*, Annals of Pure and Applied Logic, 1989.

[Raghavan/Todorcevic] *Cofinal types of ultrafilters*, Annals of Pure and Applied Logic, to appear 2012.

[Solecki/Todorcevic 04] *Cofinal types of topological directed orders*, Annales de l'Institut Fourier, 2004.

[Todorcevic] *Introduction to Topological Ramsey Spaces*, Princeton University Press, 2010.